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Introduction

Introduction

In Psychology 310, we discussed the idea of robustness of a statistical
test.

Our discussion was at the level common to textbooks that are
common in our field.

However, robustness in statistical testing has actually advanced
considerably in the past 3 decades, and some of the points of view
that were common in 1995 have now been questioned.

In this module, we discuss what robustness is, and why we need it.
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Robust Parameters and Robust Statistics Robust Statistics

Robust Statistics

In our previous discussions of robustness in Psychology 310 and in the
introductory material in this course, we have concentrated on the
robustness of estimators to violations of the assumptions of classic
parametric statistics.

For example, many of our test statistics examine hypotheses about
the population mean, and assume samples are i.i.d from normally
distributed populations with the same variance.

Our focus in examining robustness was at the level of the test
statistic, that is, we asked whether the test statistic maintains its
“nominal” behavior when key assumptions like independence,
normality, and homogeneity are violated.
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Robust Parameters and Robust Statistics Robust Statistics

Robust Statistics

This is an important area of statistical research, and people continue
to devote attention to it.

If a statistic is not robust to violations of assumptions, and those
assumptions are violated, then the statistic may reject the null
hypothesis either very frequently or never. In the former case, the
true α may be much higher than the “nominal” α. In the latter case,
power may be extremely low along with α.

Either situation can seriously compromise the enterprize of inferential
statistics.

However, as important as robustness of a statistical test is, in recent
years, additional attention has been paid to a question that is possibly
even more fundamental: should we be estimating the classic quantities
like the population mean? Are these parameters themselves robust?
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Robust Parameters and Robust Statistics Robust Parameters

Robust Parameters

Consider a measure of location, or central tendency.

Let X be a random variable with cumulative distribution function F ,
and let θ(X ) be some descriptive measure of F . Then (see, e.g.,
Wilcox, 2012) θ(X ) is said to be a measure of location if it satisfies
the following conditions for constants a and b:

1 θ(aX + b) = aθ(X ) + b

2 X ≥ 0 implies θ(X ) ≥ 0

3 Define Fx(x) = Pr(X ≤ x) and Fy (x) = Pr(Y ≤ x). Then X is said to
be stochastically larger than Y if, for all x , Fx(x) ≤ Fy (x), with strict
inequality for some value of x . If all the quantiles of X are greater than
the corresponding quantiles of Y , then X is stochastically larger than
Y . If X is stochastically larger than Y , then if θ() is to qualify as a
measure of location, it should be the case that θ(X ) ≥ θ(Y ).
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Robust Parameters and Robust Statistics Robust Parameters

Qualitative Robustness

Colloquially speaking, a parameter has qualitative robustness if the
parameter is relatively unaffected by small differences in the cdf, F (x).

Here we view a statistical parameter as a functional that carries
distribution functions, for example F , into numbers. For example the
mean is written (X ) = T (F ), this boils down to a condition of
continuity for the functional T .

It turns out that the population mean µ = (X ) is not a continuous
functional, and so, by that criterion, it is ruled out.
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Robust Parameters and Robust Statistics Robust Parameters

Qualitative Robustness

On the other hand, the γ-trimmed mean is a continuous functional.

The γ-trimmed mean is the mean of a distribution after it has been
transformed in a particular way.

Specifically, the distribution is truncated at its γ and 1− γ quantiles.

In order for the revised distribution to have an area under it equal to
1, the density function is then re-standardized by dividing it by
1− 2γ, i.e.,

fγ =
1

1− 2γ
f (x), for xγ ≤ x ≤ x1−γ (1)

James H. Steiger (Vanderbilt University) 8 / 37



Robust Parameters and Robust Statistics Robust Parameters

Qualitative Robustness
The 20 % Trimmed Normal

As an example, consider the standard normal distribution.

It has the density function

f (x) =
1√
2π

exp−x2/2, for −∞ ≤ x ≤ ∞ (2)

Since the 80th percentile of the normal distribution is 0.8416, the
20% trimmed normal has the density function

f (x) =
1

0.6

1√
2π

exp−x2/2, for − 0.8416 ≤ x ≤ 0.8416 (3)

James H. Steiger (Vanderbilt University) 9 / 37



Robust Parameters and Robust Statistics Robust Parameters

Infinitesimal Robustness

Ideally, small changes in x should not be accompanied by huge
differences in f (x).

One way to impose such a condition is to insist that the derivative of
f (x) be bounded.

In the statistics literature, the derivative of a functional T (F ) is called
the influence function of T at F .

Roughly, the influence function assesses the degree to which a small
change in F produces a large difference in the parameter T (F ).
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Robust Parameters and Robust Statistics Robust Parameters

Infinitesimal Robustness

Consider a mixture of two distributions, where one distribution F1

occurs with probability π and the other, F2, occurs with probability
1− π.

The cdf of this probabilistic mixture is

F (x) = πF1(x) + (1− π)F2(x) (4)

Let’s use this formula to characterize the influence function, especially
in terms of a single observation.

Consider the special probability distribution ∆x , which yields the
value x with probability 1.

Now, consider a mixture which samples randomly from F with
probability 1− ε, and from ∆x with probability ε.

From Equation 4, we see that the distribution has cdf

Fx ,ε = (1− ε)F + ε∆x (5)

James H. Steiger (Vanderbilt University) 11 / 37



Robust Parameters and Robust Statistics Robust Parameters

Infinitesimal Robustness

If F has mean µ, then Fx ,ε has mean (1− ε)µ+ εx .

So, the difference between the mean of Fx ,ε and the mean of F is

(1− ε)µ+ εx − µ = ε(x − µ) (6)

The relative influence on T (F ) of having the value x occur with
probability ε is

T (Fx ,ε)− T (F )

ε
(7)

So the relative influence of the mean is

ε(x − µ)

ε
= x − µ (8)

The influence function is the limit of the relative influence as ε
approaches 0 from above.

This is simply
IF (x) = x − µ (9)

which does not depend on F and is not bounded. So the population
mean µ does not possess infinitesimal robustness.
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Robust Parameters and Robust Statistics Robust Parameters

Quantitative Robustness

The way that the quantitative robustness of a parameter is assessed is
via the breakdown point.

The general idea is to describe quantitatively the effect of a small
change in F on some functional T (F ).

With Fx ,ε, the mean is (1− ε)µ+ εx .

For any value of ε > 0, the mean can go to infinity as x gets large.

The minimal value of ε for which a functional can go to infinity as x
increases is called the breakdown point.

Thus, the breakdown point for the mean is zero.

The γ-trimmed mean has a breakdown point of γ.
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Some False Assumptions about Normality

False Assumptions about Normality

Many introductory discussions of robustness examine distributions
that, when plotted, are very obviously different from a normal
distribution.

These examples lead many people to believe that they can visually
detect substantial departures from normality easily.

These examples are misleading.
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Some False Assumptions about Normality The Contaminated Normal Distribution

The Contaminated Normal Distribution

Consider a distribution that is a probabilistic mixture.

With probability 1− ε, an observation is drawn from distribution F1,
with probability ε, it is drawn from distribution F2. Means and
variances are µ1, µ2, σ

2
1, and σ2

2, respectively.

Recalling that σ2
x = (X 2)− µ2

x , it is easily established that the
probabilistic mixture has mean

µ = (1− ε)µ1 + εµ2

and variance

σ2 = (1− ε)(σ2
1 + µ2

1) + ε(σ2
2 + µ2

2)− µ2

.

If means of both parts of the mixture are zero, then µ = 0, and
σ2 = (1− ε)σ2

1 + εσ2
2.
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Some False Assumptions about Normality The Contaminated Normal Distribution

The Contaminated Normal Distribution

A standard normal distribution has cdf Φ(x). For positive constant K ,
a normal distribution with mean zero and standard deviation K has
cdf Φ(x/K ).

Consider a contaminated normal distribution in which a standard
normal occurs with probability 1− ε, and a N(0,K ) with probability
ε. This distribution has cdf

H(x) = (1− ε)Φ(x) + εΦ(x/K ) (10)

The contaminated normal has variance σ2 = ε(K 2 − 1) + 1. So, for
example, the contaminated normal with K = 10 and ε = 0.10 has
variance 10.9.
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Some False Assumptions about Normality The Contaminated Normal Distribution

The Contaminated Normal Distribution

We know from our work in Psychology 310 that in many
circumstances, there are hugely significant practical differences
between a normal distribution with a standard deviation of 1, and a
normal distribution with a standard deviation of 1.5.

The picture on the next slide shows two distributions superimposed.
One is a standard normal, the other a contaminated normal with
ε = 0.10, K = 10. The variance of the second distribution is 10.9,
and so it has a standard deviation of 3.30.

The picture is not quite what we might expect. The tails of the
contaminated distribution (in red) are much heavier than those of the
standard normal, but it is difficult to see this since the tail
probabilities are low.

Even though these distributions look very similar, the confidence
interval for the sample mean will be much wider for the contaminated
normal.
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Some False Assumptions about Normality The Contaminated Normal Distribution

The Contaminated Normal Distribution
> curve(dnorm(x),-3,3,ylab="f(x)")

> curve(.9*dnorm(x) + .1*dnorm(x,0,10),-3,3,add=T,col="red")
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Problems with the Mean

Problems with the Mean
Heavy Tailed Distributions

With a distribution like the one on the previous slide, the standard t
test and the “robust” Welch test have a power of only about 0.27 to
detect a mean difference of 1.00, with equal sample sizes of n = 25
and α = .05, 2-tailed.

What would power be if the distributions were normal? (C.P.)

Modern robust methods can retain a power of around 0.70 in this
situation.
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Problems with the Mean

Skewed Distributions

If a distribution is skewed, the mean may, in an important sense, be
unrepresentative of the bulk of observations.

On the next slide, we see a mixture of two distributions. With
probability 0.90, the distribution is χ2

4, and with probability 0.10 it is
10 times a χ2

4. The mean of the distribution is 7.6, while the median
is only 3.75.

The contaminated distribution is shown in red, compared with a χ2
4,

shown in black. The latter has a mean of 4, of course, and a median
of 3.35. In the case of the red distribution, the bulk of the
observations are far removed from the mean, which is indicated with
a dotted red vertical line.
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Problems with the Mean

Skewed Distributions
> curve(dchisq(x,4),0,10,ylab="f(x)")

> curve(.9*dchisq(x,4)+.1*dchisq(x/10,4),0,10,col="red",add=T)

> abline(v=7.6,lty=2,col="red")
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Problems with the Mean Examples from Wilcox

Examples from Wilcox

On subsequent slides, we’ll see some additional examples of how
distribution plots can deceive us into complacency.

These plots are from a recent workshop presentation by Rand Wilcox,
who is one of the leading proponents of the use of robust methods.
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Problems with the Mean Examples from Wilcox

Examples from Wilcox
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Figure 2: Two probability curves having equal means and variances.
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Problems with the Mean Examples from Wilcox

Examples from Wilcox

x
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Figure 3: Two probability curves having equal means and variances.
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Problems with the Mean Examples from Wilcox

Examples from Wilcox
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Figure 5: In the left panel, power is .96 based on Student’s T, α = .05. But in the left panel,
power is only .28, illustrating the general principle that slights changes in the distributions
being compared can have a large impact on the ability to detect true differences between the
population means.
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What are the Alternatives?

Wilcox discusses several strategies that one might employ to deal with
outliers and heavy-tailed distributions.

Some seem reasonable, but don’t work well. They include

1 Use transformations.

2 Discard outliers and use standard methods on the remaining data. The
problem with this strategy is that the standard error estimated by the
classic methods is radically wrong when applied to trimmed means.

Overall, the strategy recommended by Wilcox is to use the 20%
trimmed mean, with appropriate adjustments for the standard error.

Estimating the standard error of the trimmed mean involves
Winsorizing a sample.
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What are the Alternatives? Winsorizing a Sample

Winsorizing a Sample

Winsorization of a random sample consists of first choosing g
observations to trim from each end of the sample, and then setting

Wi =


X(g+1) if Xi ≤ X(g+1)

Xi if X(g+1) < Xi < X(n−g)

X(n−g) if Xi ≥ X(n−g)

(11)

The Winsorized sample mean is

X̄w =
1

n

n∑
i=1

Wi (12)

The Winsorized variance is the sample variance of the Winsorized
observations.
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What are the Alternatives? Winsorizing a Sample

Winsorizing a Sample
An Example

Example (Self-Awareness Data from Wilcox)

Wilcox (2009, Table 3.2) presents data from a vigilance task experiment
by Dana (1990). We’ll use these data (n = 19) to illustrate several basic
robust statistic calculations.

> x <- c(77,87,88,114,151,210,219,246,253,262,

+ 296,299,306,376,428,515,666,1310,2611)

> w <- c(114,114,114,114,151,210,219,246,253,262,

+ 296,299,306,376,428,515,515,515,515)

> mean(x)

[1] 448.1053

> median(x)

[1] 262

> mean(w)

[1] 292.7368

> var(w)

[1] 21551.43

> ## Load augmented Wilcox Library Functions

> source("http://www.statpower.net/R311/Rallfun-v27.txt")

> source("http://www.statpower.net/R311/WRS.addon.txt")

Winsorizing with γ = 0.20, g = 4, we find that the Winsorized mean is
292.7368, and the Winsorized variance is 21551.43.
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What are the Alternatives? Winsorizing a Sample

Winsorizing a Sample
An Example

Example (Self-Awareness Data from Wilcox (ctd))

We can compute the Winsorized sample, sample mean, and variance more
directly by using functions from the Wilcox library. I’ve added the function
winsorize() to generate the winsorized sample directly.

> winsorize(x,tr=.2)

[1] 114 114 114 114 151 210 219 246 253 262 296 299 306 376 428 515 515

[18] 515 515

> win.mean(x,tr=.2)

[1] 292.7368

> win.var(x,tr=.2)

[1] 21551.43
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What are the Alternatives? Winsorizing a Sample

The Standard Error of a Trimmed Mean

Interestingly, the Winsorized sample variance is used to estimate the
standard error of the sample trimmed mean.

Specifically, when using the sample trimmed mean for estimating a
population trimmed mean where the proportion trimmed from each
tail is γ,we find that the estimated standard error is

sX̄t
=

1

(1− 2γ)

sw√
n

(13)

Since

s2
w =

1

n − 1
SSw =

1

n − 1

n∑
i=1

(Wi − W̄ )2 (14)

we can rewrite sX̄t
as

sX̄t
=

√
SSw

(1− 2γ)2n(n − 1)
(15)

=

√
SSw

[(1− 2γ)n][(1− 2γ)(n − 1)]
(16)

=

√
SSw

(n − 2g)(n − 2g − 1 + 2γ)
(17)
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What are the Alternatives? Winsorizing a Sample

The Standard Error of a Trimmed Mean

It should be noted that the formula in Equation 17 for the estimated
standard error of a trimmed mean is not the same as

1 The formula given by Tukey and McLaughlin (1963).

2 The formula given by Wilcox for use in a two-sample test.

3 The formula given by SAS for its confidence interval on a single
trimmed mean.

These three other sources all give the same estimator, i.e., the one
originally given by Tukey and McLaughlin (1963).

This latter estimator is

sX̄t ,SAS
=

√
SSw

(n − 2g)(n − 2g − 1)
(18)

Although Wilcox comments obliquely on this difference, he never
provides a justification for it.

Since the exact distribution of the trimmed mean is intractable, which
standard error estimate is “better” is an empirical question that may
indeed by highly situation specific.
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What are the Alternatives? Winsorizing a Sample

The Standard Error of a Trimmed Mean
An Example

Example (Standard Error of a Trimmed Mean)

Using Equation 13, we calculate

> n=length(x)

> (1/(1 - 2 * 0.20))*sqrt(win.var(x))/sqrt(n)

[1] 56.13193

More directly, we could use the Wilcox function

> trimse(x,tr=0.20)

[1] 56.13193
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Significance Test and CI for a Trimmed Mean

Significance Test for a Trimmed Mean

In the previous section, we saw how we can estimate the standard
error of a trimmed mean.

As you might expect, this leads to a test of the hypothesis that
H0 : µt = µ0.

The test statistic is

tn−2g−1 =
X̄t − µ0

sX̄t

(19)

=
(1− 2γ)

√
n(X̄t − µ0)

sw
(20)
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Significance Test and CI for a Trimmed Mean

Confidence Interval for a Trimmed Mean

As you might suspect, the t statistic of Equation 19 can be
rearranged to yield a 1− α confidence interval.

Specifically, the endpoints of the interval are

X̄t ± t1−α/2,n−2g−1sX̄t
(21)
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Significance Test and CI for a Trimmed Mean

Significance Test for a Trimmed Mean
An Example

Example (Confidence Interval for a Trimmed Mean)

Consider the data from Dana(1990) that we examined earlier. The classic
confidence interval for the mean µ is

> df = length(x)-1

> c(mean(x) - qt(.975,df)*sd(x)/sqrt(length(x)),

+ mean(x) + qt(.975,df)*sd(x)/sqrt(length(x)))

[1] 161.5030 734.7075

The method of Equation 21 gives a confidence interval for the population
trimmed mean.
> tr=0.20

> df<-length(x)-2*floor(tr*length(x))-1

> c(mean(x,trim=.2) - qt(.975,df)*trimse(x),

+ mean(x,trim=.2) + qt(.975,df)*trimse(x))

[1] 160.3913 404.9933
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Significance Test and CI for a Trimmed Mean

Confidence Interval for a Trimmed Mean
An Example

Example (Confidence Interval for a Trimmed Mean (ctd))

We can do the calculation directly with the WRS function trimci()

> trimci(x,tr=0.20,alpha=0.05)

[1] "The p-value returned by the this function is based on the"

[1] "null value specified by the argument null.value, which defaults to 0"

$ci

[1] 160.3913 404.9933

$estimate

[1] 282.6923

$test.stat

[1] 5.036212

$se

[1] 56.13193

$p.value

[1] 0.0002911395

$n

[1] 19
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Significance Test and CI for a Trimmed Mean

Confidence Interval for a Trimmed Mean
An Example

Example (Confidence Interval for a Trimmed Mean (ctd))

To emulate the SAS calculation, we need the slightly altered estimate of
the standard error.

> trimseSAS<-function(x,tr=.2,na.rm=FALSE){
+ #

+ # Estimate the standard error of the gamma trimmed mean

+ # Using the original Tukey-McLaughlin (1963) formula

+ # Used by SAS

+ # The default amount of trimming is tr=.2.

+ #

+ if(na.rm)x<-x[!is.na(x)]

+ n <- length(x)

+ g <- floor(tr*n)

+ SSw = (n-1)*winvar(x,tr)

+ den = (n-2*g)*(n-2*g-1)

+ trimse<-sqrt(SSw/den)

+ trimse

+ }
> trimciB <- function(x,tr=.2){
+ n <- length(x)

+ df<-n-2*floor(tr*n)-1

+ m<-mean(x,trim=tr)

+ t<-qt(.975,df)

+ se <- trimseSAS(x,tr)

+ c(m - t*se,m + t*se)

+ }
> trimciB(x)

[1] 174.0418 391.3428
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